Quantcast
Channel: らふわく~Life&laugh work~受験算数・数学・趣味
Viewing all articles
Browse latest Browse all 30

受験算数、最上級問題②難角問題を使って平面図形の必勝手筋がわかる(その2)

$
0
0

■   最上級問題②難角問題      ■

happyhappy-turn.com

問題の図形はこちらでした。

この図形の中に隠れている図形をいくつ見つけられますか?
f:id:Happy-turn:20221117225914j:image

 

(1)平行四辺形が2つと正三角形が1つのケース

f:id:Happy-turn:20221117225917j:image

角ACDが15°とわかるのでAB//DCとなるのが見えます。

そこから平行四辺形が見えます。

DBCが直角二等辺三角形よりもう一つ平行四辺形が隠れているのが見えます。

そうすると正三角形が見えてきました。

実は、答えを出すのには直接関係ないのですが、等脚台形も隠れています。

基本図形のオンパレードですね。

 

(2)正三角形が1つと直角二等辺三角形1つと二等辺三角形が1つのケース
f:id:Happy-turn:20221117225920j:image
30°、60°、90°から正三角形が見えます。

直角二等辺三角形も見えますね。

ブルーの線の二等辺三角形も見えます。

 

どうしてこれらの図形が見えるのか?

 

それは

 

それぞれの図形の性質をとらえた条件設定がもとの図形にあるからです。

 

だから図形の性質をきちんと押さえておくことが大事なのです。

 

隠れている図形が見えたらあとは計算をするだけですね。

(1)は60°+45°=105°

(2)なら(180°-(45°-15°))÷2+30°=105°

 

 
にほんブログ村 教育ブログへにほんブログ村 教育ブログ 算数・数学科教育へにほんブログ村 為替ブログへにほんブログ村 サラリーマン日記ブログ アラフィフサラリーマンへ

 

 
 
 
 

Viewing all articles
Browse latest Browse all 30

Trending Articles